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Tunnelling is perhaps one of the more versatile concepts of quantum theory. It may 

be used in tunnelling microscopy’, or in describing a phase transition in the universe’! 

But, whatever tunnelling problem one wishes to address, all have in common the idea 

that two regions of space classically separated by a potential barrier are not quantum 

mechanically isolated, provided the barrier separating the two is finite. The reason is that in 

the classically forbidden r&gime the probability density is non-zero, although exponentially 

damped. 

Such is the simple picture. In practice however, calculating a tunnelling amplitude 

accurately is not so easy, except in a range of special cases, essentially one-dimensional 

problems or problems which can be recast as such. Recently, in considering inflation- 

ary scenarios, people have been examining models containing not only an inflaton scalar 

field responsible for the false vacuum energy, but also an additional scalar field, either by 

extending the gravitational sector, as in extended5 or hypere.xtended* inflation, or by in- 

cluding an extra scalar field, as in double field inflations. These ideas have in common the 

notion of a single field whose tunnelling is influenced by the classical evolution of a second 

field. This allows for a time dependent nucleation rate which resolves several problems 

with the old inflationary models. To date, most calculations4-’ have involved a “freezing 

out” of the second field, merely using it to provide dynamical evolution parameters in the 

one-dimensional problem. Since most tunnelling calculations involve stationary state Eu- 

clidean time techniques, these more complex multi-dimensional models beg the question 

as to whether such techniques are really valid when there is classical evolution. The aim 

of this paper is to approach this problem in a way that treats both types of evolution on 

an equal footing. 

In this paper, we explore this question for the test case of quantum mechanical tun- 

nelling, and consider a variety of illustrative potentials. We concentrate on the stationary 

phase or quasi-classical approximation, examining how, and under precisely what condi- 

tions this may be applied. In particular, we try to avoid assigning Euclidean time any 

preferred status, keeping it firmly in the category of an optional mathematical tool. In 

dealing with this more general class of problems, we find that we have to modify the WKB 

matching conditions to allow for the passage of real momentum under a barrier and com- 

plex momentum beyond. This naturally increases the complexity of the process of solving 

for the wave function under the barrier and beyond. We develop a method for solving 

these two problems and apply it to a variety of two-dimensional examples. 

The layout of the paper is as follows. We begin by reviewing the quasi-classical 

approximation, and what limitations it places on the type of tunnelling wave functions to 

be considered. We also review the role of Euclidean time, and highlight the problems of 



trying to apply these techniques to more general multi-dimensional barriers. This leads US 

to our description of the identification of turning points in WKB solutions and derivation 

of appropriate matching conditions. We then solve the Schrcdinger equation under the 

barrier in the stationary phase approximation. Finally, we apply our techniques to a few 

simple, but illustrative, examples. 

1. Tunnelling and the Quasi-Classical Approximation. 

Before reviewing the quasi-classical approximation, we will recap on what is usually 

meant by “tunnelling”. Tunnelling amplitudes for scattering problems are reasonably well 

defined as the ratio of the amplitudes of the emergent and incident wave functions. For 

‘stationary’ problems (a particle ‘tunnelling’ from one well or channel to another) we will 

consider a particle to be tunnelling out of its initial well if the probability of finding it in 

that well or channel goes predominantly as e -r*/h. I’ is the tunnelling amplitude. 

Now let us review the quasi-classical approximations. As the name suggests, this ap- 

proximation extracts the leading order “classical” behaviour of the system, and is only valid 

when the de-Broglie wavelengths of the particles are small compared to the characteristic 

scales of the motion. Explicitly, if we set 

$=t? k/he-<Et/h 
(1.1) 

the Schtidinger equation gives 

-&Vcr)’ - $‘cr = E-V(x) (1.2) 

as the equation of motion for u. The quasi-classical approximation is that we drop the O(h) 

term in (1.2), which clearly requires that IVal’ > tLIV’ul. If we identify the momentum p 

with Vu, we see automatically that the approximation is invalid for very small momenta, 

i.e. in regions where E N U. Thus a classical particle at rest has no stationary quasi- 

classical counterpart. However, what is perhaps less obvious is that this approximation 

also breaks down for more general turning points, when the momentum becomes parallel 

to the potential. We will discuss this point in more detail later. 

In general, if we are given a; at some initial point x;, we may write the solution for CT 

J 
x a(x) = Vcr.dl + ci (1.3) 

=; 

where dl is any path interpolating between xi and x. This is all very well, but what is Vu? 

The SchrSdinger equation is a scalar equation, relating the magnitude of Vu to U, yet we 
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presumably need to solve it throughout some multi-dimensional region of space. Banks, 

Bender and Wu9 solved this problem for the case of tunnelling from a localised state in 

more than one dimension. We will summarise their approach (and others”) here, before 

going on to discuss tunnelling from non-localised states. 

Essentially, they treated (1.2) rather like a geodesic problem, setting Vu cc dl, thus 

making (1.3) a scalar integral with respect to the length parameter along the path. This 

requires that Vu has constant phase, and hence is purely real or imaginary, the latter case 

corresponding to tunnelling. To solve this tunnelling problem, they set Q = ig and thus 

obtain to lowest order in ti 

(Vg )2 = 2m( u - E) (1.4a) 

fY=i I ” dmdl, 

where 1 is the path which minimises the integral, the edcape path, and xf is the point 

of emergence of that path into the classical rhgime. In this case, it is clear how to solve 

(1.4a) exactly, however a common alternate method, indispensible in field theory, uses a 

Euclidean time description. 

First we replace p. = Vg in (1.4a), which yields 

71=-$+U=E. 

This can then be interpreted as a Hamiltonian problem of particle motion in the (inverted) 

potential -U. We then see that there is a non-trivial solution, X(T), which interpolates 

between the initial position of the particle and its position of emergence from the barrier. 

With our Hamiltonian interpretation we identify ;C(r) with per and r is thought of as 

a time parameter. The identification of 7 as a Euclidean time comes from noting that 

g = p = dp. = ii(~), thus T = it. Solving the Hamiltonian problem along the trajectory 

gives: 

+)’ + U = E (1.6). 

hence 

,=-;6p.dl=-iJp.idr=il2(Li--E)dr. pi-) 

The advantage of this approach is that it provides a straightforward means of calculat- 

ing the escape path and action in terms of a classical mechanics problem, the disadvantage 

is that it introduces a fictitious time parameter along that path which can introduce con- 

ceptual confusion in trying to interpret what the ‘particle’ is ‘doing’. For example, a 
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statement often made is that because Euclidean time is soinehow orthogonal to real time, 

tunnelling happens instantaneously; this is rather confusing. Tunnelling is a statement on 

the dynamical evolution of the wave function according to quantum mechanics, whereas to 

say “happens instantaneously” suggests an observation, i.e. an interaction with the system. 

The only process one can label as tunnelling is the quantum mechanical leakage of proba- 

bility across a barrier which is distinct from the path of a classical particle, and also distinct 

from an observation of the particle on the other side. The actual question of tunnelling 

time is an extremely subtle and complicated one (for a review see Hauge and Stovneng”), 

and to some extent depends on how one chooses to formulate it. However, what one can 

say is that a probability density at time to + e at some point in space other than that at 

which a particle was observed at time to is not a demonstration of instantaneous motion, 

but rather a reflection of the dynamics of the Schrijdinger equation. 

Before going on to describe a more general approach to ‘escape paths’ we will make 

the obvious remark (which Goncharev and Linde I2 discuss in more detail) that the stan- 

dard Banks-Bender-Wu method requires that (Vg)s = 2 -t 0 at each end of the escape 

path, otherwise the solution cannot be matched with a classical ‘real time’ solution in the 

asymptotic regime. In the case of escape from a localised state, this can be guaranteed, 

since one end of the escape path is necessarily fixed and the other end is varied freely to 

find the minimum action, therefore we are free to set 2 = 0 at each end. However, in a 

more general scenario, such as channel-channel tunnelling, this need not be the case. Both 

ends of the escape path can now be moved, and hence it requires two initial conditions 

(rather than one as in the previous case) to fix the start of the path. Thus, since our 

equations of motion are second order, we have used up our quota of boundary conditions, 

and we just have to hope that in varying our other endpoint we ‘hit lucky’. Unfortunately, 

from (1.6) we see that 2 = VU along the path, thus if U is for example monotonically 

increasing parallel to the barrier, ji has a strictly positive component in that direction. 

Therefore x2 can never be zero at both ends of any trajectory and the Banks-Bender-Wu 

method is not applicable. 

Another disadvantage of this approach is that it makes no allowance for the transport 

of real momentum under a barrier. In the case of a continuous symmetry it is clear that such 

transport does occur, since the extra degrees of freedom decouple from the problem, and 

the wave function is merely a product of a tunnelling wave function with suitable transverse 

momenta eigenfunctions. However, trying to incorporate this into a fully Euclidean picture 

is not so easyr3. And of course we have totally ignored the problem of picking an initial 

position from which to integrate, since we can only localise a particle at the expense of 

information about its momentum. We clearly need a more general picture of tunnelling. 
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As we have noted above, in the approach of Banks, Bender and Wu, we must take space 

to be divided into regions in which Vu is entirely real or entirely imaginary; this is what 

allows us to make the identification of Vc with some k(‘Yime”). Clearly we then need j, 

to vanish on the boundaries where Vu changes from real to imaginary, but this obviously 

means that we have restricted ourselves to a certain subset of problems. As we have seen, 

it is not difficult to find a potential which does not fit into this subset. We must find 

an approach which allows for complex momentum as well as dealing with the problem of 

matching between classical and tunnelling rbgimes. This is what we will now develop. 

2. Tunnelling with classical motion - general formalism. 

We now turn to how we can modify the escape path techniques for more general poten- 

tials. The class of potentials we will be interested in are ones which contain two channels 

(or asymptotic regions) separated by some barrier in the ‘z’-direction. We envisage that 

this barrier has some arbitrary y-dependence, but that this is secondary to the height of 

the barrier. Our main assumption, other than that of quasi-classicality, is that this barrier 

is always sufficiently high so that the division between ‘classical’ and ‘tunnelling’ motion 

is clear, i.e. U >> E. 

Recall that the essential problem of tunnelling with classical motion is twofold. First 

the transition from classically allowed to classically forbidden regimes is no longer char- 

acterised by real momentum becoming imaginary (or E N U): the momentum retains 

both real and imaginary pieces. Secondly, because the ‘momentum’ is now complex, the 

evolution equations become more complicated. The first point, deciding on matching con- 

ditions, is crucial; we may fu (Vg)’ = 0 as we enter the barrier, but we must be able to 

interpret emergent solutions with non-zero Vg. 

In order to deal with complex momentum in the quasi-classical approximation, we 

rewrite (1.2) in terms of the real variables f and g, where IJ = f + ig: 

(Vf)’ - (Vg)’ + tiVzg = 2m(E - U) (Z.la) 

2Vf.09 - hV2f = 0, (2.16) 

this latter equation representing the constraint that the probability current, j = e-*9laVf, 

is divergence free. 

We now turn to the problem of matching conditions: where they should be applied, and 

how to determine them. First let us describe how to identify a turning point. Physically, 

the breakdown of the quasi-classical condition occurs when the de-Broglie wavelength of 

a particle becomes comparable to the physical scales of the potential. In problems where 

the momentum changes from being totally real to totally imaginary (or vice versa), this 
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is characterised by E - U. However, if we wish to allow simultaneous ‘class&J’ evolution 

with tunnelling (i.e. complex momenta) then we must be more specific about the quantum 

to classical transition. 

In the ‘classical’ rdgime we expect the variation of the phase of the wave function 

to dominate, whereas in the tunnelling r&me the variation of the amplitude should be 

dominant. In each of these rigimes, the quasi-classical condition breaks down when 

in other words when 

IV42 - FpcTl (2.2a) 

Pf I” - h.V2f 

PgY - h.V2g 

These relations are satisfied either when {Of 1 or jVgl are small, i.e. when E - U, ‘or when 

lVZfl or IV2gl become large, this latter situation occurring near generic turning points 

of the motion, approximately when the momentum becomes essentially orthogonal to the 

gradient of the potential. To see why this is, let us consider an incoming plane wave 

scattering off some barrier. The integral curves of Of trace out the path that a classical 

particle would follow in that potential. The breakdown of the approximation occurs when 

neighbouring, initially parallel, trajectories cross. (These can be either f-lines or g-lines.) 

The set of points where rays cross each other is referred to as a caustic and it is at these 

points that the approximation breaks down due to Vzf (or V*g) becoming unbounded. 

(In the path integral language, as we pass through the caustic the path changes from a 

minimum of the action, S, to a saddle point; that is one of the eigenvalues of PS becomes 

negative. In the expression for the propagator there is a ‘term of the form (det cPS)--~ 

which diverges”.) The matching conditions should strictly be applied along the caustics 

of the f or g curves. However, since the barrier is assumed to be slowly varying along its 

length compared with its steepness, this actually coincides with the turning point of the 

f-line, when the momentum is orthogonal to VU. 

The matching conditions in the situation E - U are the standard matching conditions, 

that is, our initial conditions for integrating away from the turning point xg are g = 0, 

Vg = 0, Vf = 0 if matching from classical to tunnelling, and g = g(xf), Vg = 0, Of = 0, 

if matching from tunnelling to classical at xf. In the second case, where there is some 

transverse momentum, then continuity of the wave function demands that the momentum 

parallel to the barrier is preserved. If this momentum is entirely real (or imaginary) the 

orthogonal part is matched as before. More precisely, the wave-function is given locally by 

z/j = e*Ai (FL-~(2mU,.)fr), (2.3) 
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where Ai is the Airy function. This gives an extra phase of e% between the incident and 

reflected wave, which is a generic feature at such turning points and can be traced back to 

the change of phase in the determinant factor of the propagator caused by reversing one 

of the eigenvalues of 6*S. 

In the case where the incident wave has complex parallel momentum, at, + ib,, we 

might expect that 

$ = ek(a,fib,)UAi fL-‘/3(2m~,~ )1/J+ + E - 2~19: + 4)’ )> . 
(2.4) 

However, using the asymptotic expansion for the Airy function, we find that the momentum 

of 4 in the z-direction is given by the energy equation 

p”. + (q, +ib$ = 2m(E - U(z)) , (2.5) 

hence if a,,by # 0 pz can never vanish. Returning to the functions f and g in equation 

(2.la), we see that whenever the distance between the f-curves scales as d along their 

length, Vg scales as d-r, thus as we approach a ‘caustic’ of f-lines, d --t 0 and Vg 

diverges, unleaJ it happens to be zero. We can therefore think of the (Vg)’ term as 

a repulsive potential between the f-lines, which provides a smooth transition between 

different r6gimes of our approximation. 

In the examples that we consider the walls of the barrier are step-functions. In this 

simplified situation, we tix the (possibly complex) parallel momentum, and then compute 

the momentum perpendicular to the barrier using equations (2.la,b), choosing the solu- 

tion corresponding to an exponentially decaying wave-function under the barrier and an 

outgoing wave at the far side. In both cases, if we label the incoming and outgoing perpen- 

dicular component of the (complex) momentum by !CI and k. respectively, then a trivial 

calculation matching the wave-function and its derivative at the boundary shows that the 

reflected and transmitted waves have coefficients relative to the incident wave of 

h - ko 2h 
h + ko ’ ICI + ko G-1 

respectively. Normally, the wave reflected from the incident decaying wave under the bar- 

rier is only an exponentially small correction (associated with multi-instanton solutions) to 

the wave-function, and so is generally disregarded in what follows, although it is responsible 

for the very small but non-zero “tunnelling component” of the probability current. 

Now that we have initial conditions for Vg and Of under the barrier, and also at the 

far edge of the barrier, let us turn to the equations of motion. 
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Since me are assuming E < U, Vg is clearly dominant under the barrier, however, 

this does not mean that we can neglect Of as an O(t) L correction, otherwise we would use 

existing techniques. Instead we want to consider a situation where h < E << 1, therefore 

we adopt a step by step procedure in solving 

(Vg)’ = 2mU - (2mE - (Of)‘) (2.7,~) 

Vf.Vg = 0, (2.7b) 

bearing in mind that (V f)*, E are of the same order, and small compared with (Vg)s, U. 

The first step is to find the leading behaviour, that is, to solve 

(Vg)Z = 2mU . (2.8) 

This is solved using the existing techniques: we use the momentum transfer equat& 

vvgvg = nvu 

to find the integral curves of Vg, and then integrate the scalar g along them: 

(2.9) 

. . 
Thrs grves us the solutron to leading order. The next step is to use the initial conditions for 

Of to integrate (2.7b) through the barrier, since (2.7b) merely tells us that f is constant 

along g-lines: f = f (VP) where ys = cp(z, y) are the integral curves of g. Finally, we input 

this solution for f back in to (2.7a) t o obtain the correct form of g to order E. 

Now that we have a systematic method for solving underneath the barrier, an ap- 

parently reasonable question to ask would be what the actual flows of the particles were 

across the barrier. This, as it turns out, is a very difficult question to address, since it 

tries to relate a classical notion (a path) to a classically forbidden regime. Even setting 

aside such interpretive reservations, we see that our solution aa it damis cannot represent 

tunnelling, since the probability current, j = e ‘slhVf, is orthogonal to the i,ntegral curves . 

of g and can therefore never leave the turning point. Clearly our solution is incomplete, 

since we know that particles do in fact tunnel, albeit with a very small amplitude. Let us 

first highlight a ‘trick’ by which we may obtain the form of the probability current before 

discussing its true origin and therefore limited interpretational value. 

Consider first (2.lb) in one dimension. If we were to expand f in powers of fi we 

would conclude that f = 0. However if we directly solve (2.lb), we obtain 

f& = f;-(zf)e*(g-gf)/h . 
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Thus, we find that as well as the zero solution, we also have a non-zero g-dependent phase 

under the barrier. This suggests that in general the probability current along a g-line is 

j, o( Ke-*g(xt)/h (2.12) 

a constant. We also have an order of magnitude estimate of the phase change along a 

g-line as hK, where K is the outgoing momentum. Note that all the phase change takes 

place at the boundaries of the barrier, therefore to get the exact phase change we should 

look at the matching conditions. In the case of a step function, (2.6) implies 

, (2.13) 

where the subscripts N and F refer to the near and far sides of the barrier respectively. An 

obvious point which we will nonetheless make is that if a path does not emerge from under 

a barrier, g increases without limit along that path, therefore the appropriate solution for 

fT is the zero solution. This implies that no tunnelling can occur along such a path. 

It would be nice to associate this probability current with the path of the particles, 

however, this would be hopelessly incorrect. We can only associate the probability current 

with a path if we have a single WKB-like wave function. Once we have a superposition 

of wave functions, such as incoming and outgoing waves, the probability current only 

represents a nett flow due to the interference between the various waves. In the case 

of real momenta, we can directly sum the probability current associated with each wave 

function to get the nett current. With complex momenta however, which unfortunately 

is precisely what we are interested in, it is the interference which gives the probability 

current. Thus, although this trick which we have illustrated does extract a probability 

current f&m a complex momentum wave function, the non-vanishing of this current relies 

crucially on the existence of a point of emergence for this wave function into the classical 

regime, and this is exactly equivalent to the existence of another, exponentially growing, 

branch of the solution. As such VfT cannot be interpreted as a flow of particles under the 

barrier, but rather as a shorthand way of estimating the multi-instanton corrections which 

does in fact give the correct order of magnitude for the tunnelling current (although it is 

out by a factor of order unity). 

Finally, before investigating a few concrete examples, we should summarise the limits 

to our approximation. First, we have assumed E << U in order to facilitate the solution 

of (2.1) as an expansion in E/U. Our second main assumption involves the matching 

conditions in terms of the local orthogonal coordinates along the caustic, this requires that 
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the caustic not be too strongly curved which translates into a restriction on U,,,. From 

(2.4) we see that the quasi-classical approximation is invalid for 1x1 5 tLZ/3(2mU,, )-l/s. 

This gives a rough order of magnitude limit U,,, 5 i5-4’3(2mU,, )*/‘, which one can sub- 

stantiate with a more careful calculation. This shows that our turning point treatment is 

generically valid. In practise, calculational complexity will be the limiting factor for U,,,, 

- curved caustics are more difficult to deal with. 

3. Plane wave scattering - examples. 

In order to examine the flows of the wave function we first consider a steady state flux 

of particles impinging on a variety of barriers, that is, +,,, = eik.x/h. We do this because 

we no longer have localised quasi-classical states in the direction of classical motion. We 

follow the wave function under the barrier and out into the second ‘classical’ regim_e. After 

calculating the form of the tunnelled wave function, we use the momentum eigenstates to 

build the physically more realistic situation of a Gaussian wave packet hitting the barrier. 

This more realistic scenario allows us to highlight the existing controversy of tunnelling 

times for the square barrier, as well as illustrating some interesting new properties of more 

general barriers. 

To illustrate our techniques we have chosen three examples in order of increasing 

complexity. We begin with the simplest possible two-dimensional potential - a separable 

square barrier. This allows us to check our calculations against an exact solution, and 

also leads naturally to the second example: a square barrier of varying width. Finally, we 

consider a square barrier of fixed width and varying height. These latter two potentials 

demonstrate some very peculiar scattering properties as we shall see. 

Ezampk 1: U(x) = VO(z)O(a -z). 

For this potential we know the exact form of the stationary eigenfunctions: 

4(x) = eiP~~~t’&Jz) 

where 

(3.1) 

‘t&(Z) = 

i 

eiP,z/h - ;iT(e + ~)e’P~~/he-~P,~/hsinhna/ta I < 0 

p&a/h [(I + G)e--rr(--z)/h + (1 - +)e4a-=)/h] O<Z<U (3.2) 

TeiP,=/h z > a. 

is the usual one-dimensional square barrier wave function, with 

P1 
2 = 2mE -pz2 2 =2mv-p,2 

-1 
T=e -ip,a/h cash ~a/15 - i( % - E) sinh na/tc. 

> 

(3.3) 
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It will be convenient to rewrite this transmission coefficient as 

T=--e 2P1n --ipta/he-iO/h 
D 

where 

D2 = 4p,‘d + 4m2Vz sinh’ na/tL (3.5) 

gives some measure of the transition amplitude, and 

0 2 2 
-=ttan-’ 
fi 

n -pl tanhT 
2P,K 

gives the ‘transition phase’. This latter quantity is important in discussing some interpre- 

tations of the tunnelling time. 

For V > E we see that 

D N 2mV sinh n” N mVe so/h 
h 

0 Ntan-l Jc = 2P, 
h 

--N---- 
2P, 2 u 

and hence 

T 2p,n -co/h exp -ha in --.S 
{ 

--y+ 2ip, 
mV h n > 

(3.8) 

Comparing the transmitted solution with the incident solution, we see that the transmission 

amplitude, [Tl, is given approximately by %emRa (having set n - m) and that the 

transmitted wave acquires a phase (7 - z + %). 

To solve the Schrklinger equation using a quasi-classical approach is in this case very 

straightforward since U is a function of one variable only. The solution of (2.7a) to leading 

order is g = mz. Equation (2.7b) then implies that f = pay. Equation (2.7a) then 

implies that g = J2n( V - E) + p12 I = K.E as required. 

To solve in the asymptotic &gime we note that since Vg = 0 along z = a, g must be 

a constant, gf, and therefore Of returns to its original value (p,,p,). To find the phase 

shift across the barrier, 0, we use (2.13) and obtain AfT = 0 = tan-’ 2, in agreement 

with (3.7b). Thus, integrating out from z = a, we obtain 

g = na 

f = P,Y + P,(Z - u) + t-k@ 

(3.9a) 

(3.9b) 

in agreement with the exact solution. 

12 



Now we will attempt to solve for potentials which have a small y-dependence included: 

Ezampk 2: &(x) = VO(z)O(a - z - ey). 

This represents a barrier of constant height and varying thickness. Clearly, since our 

initial conditions for integrating under the barrier are the same as for the first example, 

the solution for f and g under the barrier is the same: 

f=P,Y, g=J2mo+p:z=nz: (3.10) 

To find the solution in the asymptotic region, we must recall the boundary conditions to 

be applied at the far edge of the barrier: Vf,, , Vg,, are preserved. Now, if we assume that 

c < 1, and only keep terms of order c, then the tangent and normal vectors to the far 

surface are, respectively, - 

T= (ye) N= (:) . (3.11) 

Therefore 

Vg,, = -cnT and Vf,, = p,T . (3.12) 

We may then use equations (2.7a,b) in the asymptotic region to conclude that 

f..,=p,(z--++Y)+P,(Y--c(z-a))+hO 

= P,( fP,‘I + h@ 

go., =Ka-eKrl+y 

where 
(=I-aaey 

1) = y - e(+ - a) 

(3.134 

(3.136) 

(3.14) 

and 0 = tan-’ 2pl-+‘&l is given by (2.13). Th e solution for g in the asymptotic region 

is now a function of q and t (or I and y) This is in contrast to the previous example of 

the square barrier. It is intuitively obvious that the the probability density decreases in 

those regions where the barrier is thicker. The spatial variation of g will lead to interesting 

phenomena when we come to discuss the scattering of a Gaussian wave-packet off this 

potential in the next section. 

Erample 3: U&c) = Ul(x)e-Q’. 

In this example we have a barrier of constant thickness, but varying height. The 

matching conditions for a step-function give the initial conditions for integrating under 
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the barrier: 

V&=0+ = (0,P2) 

Vg&,+ = (VGze-Y,O) 
(3.15) 

+(O+,Y) = e+ 
[ 
p 

I 
+;&,? 1 

The first step in solving equation (2.7a) is to find the integral curves of Vg. If we 

write Sz = Vg (cf Euclidean method) th en by examining j; = VU we see that 

7j* = 2mV(e-‘y - ergo) 

22 = 2nv’e-‘Yo . 

The equation for the integral curves is therefore 

dy 
x=-J 

~-‘b-vo) - 1 . 

This has solution 

2 
y=ys+-logcosT 

c 
2 

Zyo+ 

(3.16) 

(3.17) 

(3.18) 

this latter approximation being valid when er < 1. Note that the form of the integral 

curves is invariant along the barrier. The curves all asymptote the line ez = ?r, so we 

will impose a < r/c to ensure that (Vf)* remains small. Now, for these curves, 2 = 

,-4vo-d/Z = cos y. Hence 

9= 
I 

=mds= 
x.2 I 

x me;e-“f2 set Fdz 
x0 

= ~e--rd2 2 tan 2 
l 2’ 

= &$7evfyf2 2 sin y. 
c 

(3.19) 

Having found the zeroth order solution for g, we must now apply (2.7b) to find f, 

using f = p,y initially. From (2.7b) we see that f must be constant along integral curves 

of g, hence 
2 

f=p>(y--logcos~). 
c (3.20). 
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From this we may deduce that (Of)’ = pz SK* y and hence 

(vg)z = 2nt~e-‘~ + p: set’ 7 - 2mE . (3.21) 

Now we find ourselves in the situation of having a modified equation for the integral curves 

of vg. 

(3.22) 

Je-(v-YO) [ 1 $fYO 

2 

1 Lewo Sec2 

cz 

=- - + - - 

4mV . 

2 1 
Setting 

X = 2(1 + +e’*O) - &efyO tan 7 , 

we transform (3.22) back into (3.17), with I replaced by X. Hence 

EX 
Y=Y,+~logcos~ 

are the new integral curves, and 

!I= J 
= &3Fe-‘Yo12 

x.3 
sec$dGdr 

= 
J 

X 

X0 

me-cYd* SecZ $ 1 + &‘Yo dX 

( 2mV > 

1 + -&efy set $ 
> 

(3.23). 

(3.24) 

(3.25) 

is the new g. . 

Having now verified the stability of our solution, for calculational brevity we will now 

retain only the leading order parts off and g in what follows. We must now match the 

wave-function across z = a. We know that f,g, G, 8y sf 2 all match continuously across the 

boundary. In particular 

af 
dy =P2 

aS zz -&&i7emYsin2 
(3.26) 

aY 2 
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at z = a+. Using our matching conditions, if we let pz = ($& + ig) then 

pi = 2E - (p, - ;-e-y sin:)* 

= p: + 2mVe -“sin’: + 2ip,&ZFsin~e-~ 
2 

(3.27) 

There are two limits in which information can readily be extracted: 

(a)& > ea 

In this case the barrier is very slowly varying with respect to the other scales in the 

problem (although not necessarily with respect to tL), and the asymptotic &gime is clearly 

identified as (Vg)’ < (V f )a. Clearly we may take sin? - y, so that to order 
$75 Iv= 

have 

p. =p1 +r-- ‘y: dZZee-Y (3.28) 
1 

Solving for f and g in the asymptotic region can be achieved by following the same 

procedure as under the barrier. In this case we first solve for f and then demand that g is 

constant along the integral curves of Of. This gives that 

f =p,(“-a)+p,(y--logcos;) 
c 

g = ~ae-SIY-$y’-‘)l 

These expressions are valid in the region 1 > e[y - z(z - a)] > loge. 

(b) @ CC sin? 

In this case we have 

p. N &Ze-~sin~ f ip, (3.30) 

In this limit one can ignore the energy term in comparison with (Vf)*,(Vg)* and the 

WKB equations for f ,g become equivalent to the Cauchy-Ftiemaun equations. We can use 

this to find an approximate solution for f and g in the region z > a. If g = g(a,y) and 

f = f(a,y) on the boundary then letting .s = y + i(z - a) we may write 

g = Reg(a,z) +Imf(a,z) = ~~sin~cose(Z:~a)e-? +p,(z -a) 

f = -Img(a,z) + Ref(a,z) = ~~sin~sinE(z~ a),-? +p,(y - zlog ~0s:) 

(3.31) 
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At this point let us make a few remarks on the form of this solution. Near the 

barrier the wave-function dies off doubly exponentially rapidly as y .+ -co, where the 

barrier is highest. This is not surprising since the barrier is exponentially rapidly growing 

here. However what is interesting is that the solution does not seem to make sense for 

I + a + x/c as g -+ 0 here, making the wave-function (doubly) exponentially enhanced 

relative to its value near the barrier. This can be understood by looking at the integral 

curves of Of, which asymptote z = a + x/e. As we approach this line, we cross integral 

curves of Vf which emanated from z = a at larger and larger values of y, in particular 

where m - co, where approximation (b) is no longer valid. Thus the solution (3.31) 

cannot be extrapolated to z - a + x/c, and can only be regarded as a solution close to 

the barrier. However, it is interesting in that it deals with a regime in which the barrier is 

rapidly varying in height. 

4. Scattering of Gaussian wave-packets 

We are interested in understanding what happens when a classical particle scatters 

off the sort of potentials we have been considering. So far, we have given a solution for 

incoming plane waves scattering off such potentials. The linearity of Schridinger’s equation 

enables us to add these solutions together in order to find time-dependent solutions. We 

will be interested in considering solutions for which the incoming wave is a Gaussian 

wave-packet, since this can be thought of as representing a classical particle. After some 

introductory remarks we shall examine the solution for a Gaussian wave-packet scattering 

off each of the potentials considered in the last section. 

Briefly, we review Gaussian wave-packets to establish notation. Let us consider a 

solution to the one-dimensional SchrXnger equation, which at time t = 0 has the form 

g(z,O) =X*r l e 1 e7 

To find S(z, t) we first take the Fourier transform 

(4.1) 

F(k) = & J &J,i,y~e’(?-k)fe+ 
(4.2) J%-W2 

{ 2x 

Then we have that 

Q(z,t) = J d(!?)+e+-e-& 

= (2A)-+h-lx-+X-+ exp J+2y)2 i ;P:t I + 
(4.3) 

2mh 1 
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where A = & + $. This solution represents a Gaussian wave-packet with momentum 

pr. The wave-packet has < Ax’ >= 2h4XIAjZ and < Akr >= iXtL*. The modulus of A is 

smallest at t = 0 and at this time the wave-packet is minimal. The wave-packet begins to 

spread appreciably for ItI > E. 

People are generally interested in two types of wave packet: those extremely peaked in 

momentum space ( X of order unity) and those equally spread in position and momentum 

space (X = O(ti-‘)). Notice that even in this latter category, the wave packets are still 

very sharply (- R) peaked in momentum space. In the first case, the packet, although 

comparatively diffuse in r-space, maintains its shape for t < FL-‘, whereas in the second 

case, the packet starts to spread for t of order unity (although the spread is still of order 

h); this is quite sufficient. We will therefore assume that XFL is at most of order unity. 

In the previous section we obtained the solution for a plane wave scattering off three 

different potentials, what is now required is that we take the appropriate linear combina- 

tions of these solutions so that the composite describes an incident wave-packet which can 

be interpreted as a classical particle. This is simply a product of the solutions described 

above; that is 

%n(+,Y,t) = l 
-!r& 

2h2A&ie ’ exp 

(4.41 
where E = &(p: +p:). This describes a wave packet with momentum (pl,pz) hitting the 

origin at t = 0. The momentum profile of the wave-function has the form 

In order to find the emergent wave-function we integrate 

*E(?Y,t) = dkldkzF(;, ;)+out(k;,z,y),* 

(4.5) 

(4.6) 

where 

* ouL m ,~(f~.~+G7..~) (4.7) 

is the approximate form of the outgoing wave function calculated in section three. We may 

write this integral in the form 

h(%Y,Q = l .lJ hlh 
2rhZGi 

dkldkze (4.8) 
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where 

A(“,Y,k*,k,,t) =ifout -gout- &(“; -pi)’ - &kf . (4.9) 

We use a saddle point method to calculate this integral making the exponent stationary 

with respect to k,, k,. We are interested in the trajectory of the peak of the wave packet, 

the position of which is given by VReh = 0. We then use the set of equations 

ah 0 -= 
84 

(4.10a) 

VReA = 0 (4.10b) 

to determine the trajectory of the outgoing wave packet. 

Having now outlined the general procedure, let us return to our three examples, in- 

vestigating the behaviour of a Gaussian wave packet BS it bits each in turn. 

Ezample 1: U(x) = VO(z)O(a - z). 

Here we substitute in (4.6) the outgoing wave function from equation (3.2): 

&.,t = T(k,)eik.x/h (4.G) 

where T is the transmission coefficient in eq(3.3b). Integrating over k, merely inverts the 

Fourier transform in the y-direction since 2’ is independent of y and the integral over the 

z-momentum is peaked about some k. close to p1 < U. We therefore approximate T by 

T(k,) - 2kzn(kz) exp 
ikla 4kl) iO(kl) 

77LV ------ . A FL ?i 1 

This now simplifies the expression (4.9) for the exponent: 

A(z,t, kl) = ikl(z - a) - &(kI - ~1)’ - &k: - na - iO(k1) . 

Using the saddle-point approximation we expect that 

*E(%Y,l) 0: exp 
{ 

4hta(Y _ $,2 + iP;y +Zt } e+pd 
2mli 

where 

ah - 
’ = 8kl li, 

ik,t 
= i(z - a) - &(k. - pl) - - + ak, 

m J2mV - k,= - 
iO’(k,) 
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(4.15) 



In order to find the trajectory of the peak of the emergent wave packet, w-e ,combine this 

information with (4.10b) (which simply reduces to Imk: = 0). Doing this, we find that 

along the peak 

where kh, the momentum of the peak, is determined by the real part of (4.11), which we 

may expand to order m to obtain 

(4.17) 

This, together with the equation giving the peak in the y-direction which is obviously 

y = $ suggests that the peak emerges at time t. = -@‘m/k: =0(h) at (a, e), and 

travels subsequently in a straight line. 
-- 

We have been deliberately obscure about the actual value of 0’ (and hence t.) since 

it would be misleading to advertise this as the actual tunnelling time when there is consid- 

erable debate on this topic”, indeed, as we shall see in the next two examples, taking this 

quantity seriously as a tunnelling time would lead to some interesting physical dilemmas. 

This time is called the phase timPJ6 of the tunnelling process, and is really only well 

defined asymptotically, well after the scattering/tunnelling process has been completed. 

One way of seeing why this must be so is to recall that the distortions of the wave packet 

close to the barrier make ‘definitions’ such as ‘when the particle hits the barrier’ subjective 

at best, meaningless at worst. Our reason for including this term is twofold. First we wish 

to emphasise the physical, quantum mechanical nature of tunnelling. Secondly, in the next 

two examples, we find factors in t. due to the variation of the potential and we would like 

to compare the two factors. 

Ezample 2: Uz(x) = VO(z)O(a - 2 + 0~). 
Having worked through the first example in some detail, we now summa&e the steps 

for this example. Using (3.13), we may write the exponent (4.9) as 

A(&q,k,,k,,t) = -(ki2;tfl)2 -z - na + cq - ~CIC( + i(k,< + k,q + Oh). (4.18) 
I 

where < and 7 are given by (3.15). Making th IS stationary with respect to the ki yields 

the two (complex) equations: 

-~(kz-p,)-~kz+~-~(~ -~+)+~(<+Q,,~L)=o 
L 

-$k, -pa) - zk,, - 2 + i(v + (21,~ FL) = 0 

(4.19) 

z 
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For the trajectory of the wave packet we use (4.10b) and (4.18) to find 

k’n 
Imk: = -cRe$- 

z 

Imk; = cRetc . 

(4.200) 

(4.20b) 

Now we have a situation in which the momentum dominating the integral is complex. 

Writing k: for Rekl, and substituting from (4.20) for Imk:, and similarly for kb, the 

equations for the emergent wave peak can be seen to be 

k;t k; I k; 
E=-O,lh+m-~‘+kr’a 

= 0 
I 

II=-Qh+Q+i 
m 

(4.21~~) 

(4.21b) 

“: = P, 

Thus we see that the packet emerges from under the barrier at a time and displacement 

given by 

(4.231~) 

(4.236) 

subsequently traveIIing along the straight line 

+ + i 
Y ( 

1 + $(I- aM/n) + O(h) 
> 

with a damping relative to the incident Gaussian of 

e--rb--.rl.l/h w e--rra..,/h 
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There are several interesting differences with the previous example. The first is that 

the tunnelling time can now be negative. 1 This peculiarity arises for a simple physical 

reason, the fact that the most energetically favourable time for the Gaussian to tunnel is not 

necessarily when the peak hits the barrier. Tunnelllng amplitudes depend exponentially 

on the size of the barrier, therefore it is more favourable to tunnel when the barrier is 

thinner or lower. On the other hand, the probability density along z = 0 is damped by 

an exponential factor depending upon how far away that point is from the peak of the 

Gaussian. Clearly there will be a pay off between these two factors which mcry mean that 

it is more energetically favourable for the fringe of the Gaussian to tunnel, rather than its 

pCS.k. 

The second thing to notice is that the wave packet emerges on the other side of 

the barrier at q = qer somewhat ‘downstream’ of where one might expect it. The two 

possibilities for emergence would be the perpendiculars from either the start of the barrier, 

or its end, that is, q = 0 or TJ = as. Neither of these naive choices are equal to ne. This 

shift has the same physical origin as the unusual t.. 

Fiially, we should remark that the incoming and outgoing momentum are not quite 

parallel, since the (z,y) and (E,q) coordinate systems do not quite coincide. 

Ezample 3: Us(x) = Vl(x)e-‘u. 

We shall now discuss the problem of scattering a Gaussian wave-packet off a barrier 

of variable height. This problem is much closer to the sort found in inflationary models. 

As before, the emcrgent wave-function will be the superposition 

$‘E(GY,t) = 
IJ 

where we include the factor of e? so that the wave packet bits the barrier at (0,~s) 

rather than the origin. Recall &Ut was calculated in two separate limits. We now calculate 

the outgoing peak trajectory in each case. 

(a) 4 > co. 

In this case, from (3.29), we find that A is equal to 

2Ah --~~(k,(3-u)+k,(Y-Y5--logcoo~))-~~e-i[D-Y~-~(’-~)1 

(4.25) 
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Making this stationary with respect to the k, gives 

-$(k, - p,) - ;kz + ;(z - a) + ;v’%+z - a) = o 
z 

-&(k,-p,)-;k,+i(y-;logcos~)+fi4&++) =O 

(4.26) 

As before, we use (4.10b) to find the trajectory of the peak of the wave packet 

Imlc~ = -ymRez 
z 

Imkb = yx&? 

(4.27~) 

(4.27b) 

Again, the momentum dominating the integral is complex. Writing k: for Rek: etc. as 

before, the equations for the emergent wave peak can be seen to be 

(,-.)=~+!$ (4.28a) 
D 

(4.28b) 

where 

~= cam 
2xti 

k: = P, 

k; = p, + 

Therefore the packet emerges from under the barrier at 

m2k’ 
t. = $ 

2 
y.=ys+-logcos~+~ 

e 

subsequently travelhng along the straight line 
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(4.29a) 

(4.296) 

(4.29c) 

(4.30a) 

(4.3Ob) 

(4.3Oc) 



with a damping relative to the incident Gaussian of 

,-v’%%.-fr~/h (4.30d) 

Thus, as in the previous example, the tunnelling time once more can be negative (for the 

same reason) and the peak of the transmitted wave packet emerges somewhat downstream 

from where we might have expected. 

In this case, from (3.31), we obtain 

A=-~~sin~ei~~v+‘~-*il+ik,(y-ys-~logcos~+i(z-a))- 
(ki - pi)’ ikit -- 

2.R 

Using saddle-point methods to evaluate this integral we arrive at the solution 

Y=Ys+flogcos~+e-36LYsin~ &cos 
( 

c(2 -u) t c(z - a) 
2 + ; sin 

2 > 

* 
z=o+h+e+&ZsinCa 

1 . ~(2 -a) 
+;cosc(z;=)) 

(4.32) 

Ah 2 -xsln 2 

so that the peak emerges at z = a at a time and position given by 

t. = - 
p#91a 

Xfi.dKiV sin y 

Y.=Yo+~logcos 
e-3dza 

;+ xtr 
sin z 

2 

As in the previous examples there are three terms which contribute to the value of y at 

which the particle emerges: its initial position, the shift to this due to the curvature of the 

Vg integral curves under the barrier and a term which depends on the spread X. Again, 

the time at which the peak emerges can be positive or negative depending on the sign of 

Pa* 

5. Conclusions. 

In this paper we have generalised existing methods for calculating tunnelling processes 

to allow for complex momentum. This allows us to calculate tunnelling amplitudes in a 

wider class of potentials. We started by reviewing the BBW approach, then described 

how to generrdise this to include complex momentum. The problem of solving under the 
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barrier was made tractable by assuming that the energy of the wave function was small 

compared with the height of the barrier. The matching conditions we derived by imposing 

continuity of the wave function allowed us to transport real momentum under the barrier 

and imaginary momentum beyond. 

In section 3 we applied this method to three examples: a square barrier for which 

we knew the exact solution, a step function of varying width, and then one of varying 

height. WC found that the outgoing momentum was not necessarily parallel to the incoming 

momentum, a feature that we expect for generic barriers. Examining the scattering of 

Gaussians against these barriers allowed us to follow a wave packet tunnelling; probably a 

more realistic physical scenario. In recapping the square barrier case, we could illustrate 

the origin of one definition of tunnelling time, the phase time. WC used this to explore the 

effect of barrier variation. This, as it turned out, was quite significant. Both in th_e case of 

the step barrier with varying height and that of varying width we found large corrections 

to t. and a shift in the place of emergence of the wave packet into the asymptotic regime. 

These turned out to have a simple physical origin. It is incorrect to assume that it is 

the peak of the incoming packet that dominates the emergent wave-function, and that 

tunnclling takes place when this peak is next to the barrier. Tunnclling is an exponentially 

suppressed phenomenon, and therefore it is far more favourable to tunnel where the barrier 

is smaller, even if the impinging probability density there is not a maximum. 

The last two examples we considered suggest that the definition of ‘phase time’ as 

it stands is not a good definition of tunnelling time since it assumes that the tunnclling 

process starts when the peak hits the barrier. It is possible that some modification of this 

description would give sensible results, compatible with the uncertainty principle for energy 

and time, although such a modification would naturally weaken the status of phase time. 

Unfortunately, we are not able to shed any light on whether some alternative definitions 

of tunnelling timcs17-‘Q are any better. 

We restricted ourselves to the examples discussed since they illustrate the salient fea- 

tures of multi-dimensional tunnclling without too great calculational complexity. However, 

it wss the cosmological applications of complex momentum tunnelling that originally inter- 

ested us, and these involve tunnelling processes from semi-localised states in field theory. 

The problem of calculating a tunnelling rate from a state localised in the z-direction should 

represent one step up in complexity from our examples and is currently being calculated. 

The problem of applying these ideas to field th eory would involve translating the tech- 

niques presented here into the functional Schrijdinger picture. This may prove to be very 

problematic, although clearly that is the next step in solving the two field problem. 
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